Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4323, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541087

RESUMO

Development of Archean paleosols and patterns of Precambrian rock weathering suggest colonization of continents by subaerial microbial mats long before evolution of land plants in the Phanerozoic Eon. Modern analogues for such mats, however, have not been reported, and possible biogeochemical roles of these mats in the past remain largely conceptual. We show that photosynthetic, subaerial microbial mats from Indonesia grow on mafic bedrocks at ambient temperatures and form distinct layers with features similar to Precambrian mats and paleosols. Such subaerial mats could have supported a substantial aerobic biosphere, including nitrification and methanotrophy, and promoted methane emissions and oxidative weathering under ostensibly anoxic Precambrian atmospheres. High C-turnover rates and cell abundances would have made these mats prime locations for early microbial diversification. Growth of landmass in the late Archean to early Proterozoic Eons could have reorganized biogeochemical cycles between land and sea impacting atmospheric chemistry and climate.


Assuntos
Microbiota/fisiologia , Atmosfera/química , Clima , Planeta Terra , Fenômenos Geológicos , Geologia , Indonésia , Metano , Fenômenos Microbiológicos , Microbiota/genética , Modelos Químicos , Fenômenos de Química Orgânica , Oxirredução , Oxigênio/metabolismo , Fotossíntese
2.
Geobiology ; 13(3): 209-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639940

RESUMO

Microfossils belonging to the 1.88-billion-year-old 'Gunflint-biota' are preserved as carbonaceous and hematitic filaments and spheres that are believed to represent ancient chemolithoautotrophic Fe(II) oxidizing bacteria that grew above a chemocline where ferruginous seawater upwelled into shallow, oxygenated waters. This 'biological' model posits that hematite formed during burial from dewatering of the precursor ferric oxyhydroxides that encrusted Fe(II)-oxidizing bacteria. Here, we present an alternate 'taphonomic' model in which iron-rich groundwaters discharged into buried stromatolites; thus, the mineralization reactions are more informative of diagenetic processes than they are for primary marine conditions. We sampled centimeter-scale columnar stromatolites from both the lower and upper stromatolite horizons of the Biwabik and Gunflint formations, across a range of metamorphic gradients including unaltered to prehnite-pumpellyite taconite, supergene altered ore, and amphibolite-pyroxene grade contact-metamorphic zones. Fossils are rare to very rare and comprise curved filaments that exist in clusters with similar orientations. The filaments from throughout the Biwabik are similar to well-preserved carbonaceous Gunflintia from Ontario. Spheres of Huroniospora are also found in both formations. Microfossils from the least altered sections are preserved as carbon. Prehnite-pumpellyite samples are composed of either carbon or hematite (Fe2 O3 ). Within the contact aureole, filaments are densely coated by magnetite (Fe3 O4 ); the highest grade samples are secondarily oxidized to martite. The consistency in stromatolite microstructure and lithofacies throughout the metamorphic grades suggests they formed under similar environmental conditions. Post-depositional alteration led to replacement of the carbon by iron oxide. The facies association, filament distribution, and lack of branching and attached spherical cells argue against Gunflintia being a direct analogue to common marine, chemolithoautotrophic Fe(II)-oxidizing bacteria. Instead, we propose that the presence of hematite-coated microfossils is a reflection of taphonomic processes and does not necessarily reflect the byproduct of an original microbial ecosystem.


Assuntos
Cianobactérias/química , Cianobactérias/crescimento & desenvolvimento , Compostos Férricos/química , Fósseis/microbiologia , Fenômenos Geológicos
3.
Geobiology ; 13(1): 1-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25324177

RESUMO

It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF.


Assuntos
Evolução Planetária , Compostos Férricos/química , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Água do Mar/química , Atmosfera , Planeta Terra
4.
Geobiology ; 11(4): 295-306, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23601652

RESUMO

Here, we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones, and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn-binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case, zinc's geochemical and biological evolution may be decoupled and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn-organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints on potential couplings between the trajectory of biological and marine geochemical coevolution.


Assuntos
Evolução Biológica , Eucariotos/genética , Eucariotos/metabolismo , Compostos Férricos/metabolismo , Água do Mar/química , Zinco/metabolismo , Sedimentos Geológicos/química , Oceanos e Mares
5.
Appl Environ Microbiol ; 76(1): 102-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19915039

RESUMO

Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa approximately 6.5), phosphoryl/amine (pKa approximately 7.9), and amine/hydroxyl (pKa approximately 9.9). EPS and WC both possess carboxyl groups (pKa approximately 5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells.


Assuntos
Cádmio/metabolismo , Cytophagaceae/química , Cytophagaceae/metabolismo , Polímeros/metabolismo , Ácidos/análise , Adsorção , Álcalis/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Titulometria
6.
Geobiology ; 7(1): 25-34, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19200144

RESUMO

Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164A and 8.3774A, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe(3+) (1.990)Fe(2+) (1.015)O(4)) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe(3+) (2.388)Fe(2+) (0.419)O(4)). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.


Assuntos
Compostos Férricos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Shewanella/metabolismo , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Microscopia Eletrônica de Transmissão , Oxirredução , Análise Espectral
7.
Geobiology ; 6(3): 189, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18498524
10.
J Environ Sci Eng ; 48(1): 27-34, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17913198

RESUMO

The Pachin river is an upland tributary of the Brahmaputra river, originating in the foot-hills of the lesser Himalayas. A systematic study of major ions and heavy metals in the surface water of the river was carried out at peak, intermediate and low flow conditions during an one-year interval to assess the relative contributions from weathering and pollution. The major ion chemistry indicates that silicate weathering and precipitation are the major contributing factors to the river's chemical composition. The Pachin river is characterized by a low overall conductivity, even during times of evaporative concentrations during low flow. This corresponds to the fact that the catchment area is still relatively pristine, i.e., well forested and without significant industry. However, heavy metal patterns clearly reflect source input from agricultural activity and urban development. The levels of Fe and Co were amongst the highest of any rivers of the Indian sub-continent, while these and Cr, Mn, Cu and Se each exceeded the world average value. These results clearly indicate that rivers draining pristine areas can be significantly modified by human activities, and consequently, these must be monitored to ensure that useable water supplies meet the prescribed safety standards.


Assuntos
Metais/análise , Rios/química , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Carbonatos/análise , Monitoramento Ambiental , Índia , Estações do Ano , Selênio/análise , Dióxido de Silício/análise , Sulfatos/análise
11.
Appl Environ Microbiol ; 68(10): 4827-34, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12324327

RESUMO

The cell surface reactivity of the cyanobacterium Calothrix sp. strain KC97, an isolate from the Krisuvik hot spring, Iceland, was investigated in terms of its proton binding behavior and charge characteristics by using acid-base titrations, electrophoretic mobility analysis, and transmission electron microscopy. Analysis of titration data with the linear programming optimization method showed that intact filaments were dominated by surface proton binding sites inferred to be carboxyl groups (acid dissociation constants [pK(a)] between 5.0 and 6.2) and amine groups (mean pK(a) of 8.9). Sheath material isolated by using lysozyme and sodium dodecyl sulfate generated pK(a) spectra similarly dominated by carboxyls (pK(a) of 4.6 to 6.1) and amines (pK(a) of 8.1 to 9.2). In both intact filaments and isolated sheath material, the lower ligand concentrations at mid-pK(a) values were ascribed to phosphoryl groups. Whole filaments and isolated sheath material displayed total reactive-site densities of 80.3 x 10(-5) and 12.3 x 10(-5) mol/g (dry mass) of cyanobacteria, respectively, implying that much of the surface reactivity of this microorganism is located on the cell wall and not the sheath. This is corroborated by electrophoretic mobility measurements that showed that the sheath has a net neutral charge at mid-pHs. In contrast, unsheathed cells exhibited a stronger negative-charge characteristic. Additionally, transmission electron microscopy analysis of ultrathin sections stained with heavy metals further demonstrated that most of the reactive binding sites are located upon the cell wall. Thus, the cell surface reactivity of Calothrix sp. strain KC97 can be described as a dual layer composed of a highly reactive cell wall enclosed within a poorly reactive sheath.


Assuntos
Membrana Celular/química , Cianobactérias/química , Proteínas de Bactérias/análise , Membrana Celular/ultraestrutura , Cianobactérias/ultraestrutura , Microscopia Eletrônica , Propriedades de Superfície
12.
Appl Environ Microbiol ; 60(2): 549-53, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16349185

RESUMO

Epilithic microbial communities, ubiquitously found in biofilms on submerged granite, limestone, and sandstone, as well as on the concrete support pillars of bridges, were examined in the Speed River, Ontario, Canada. Transmission electron microscopy showed that attached bacteria (on all substrata) were highly mineralized, ranging from Fe-rich capsular material to fine-grained (<1 mum) authigenic (primary) mineral precipitates. The authigenic grains exhibited a wide range of morphologies, from amorphous gel-like phases to crystalline structures. Energy-dispersive X-ray spectroscopy indicated that the most abundant mineral associated with epilithic bacteria was a complex (Fe, Al) silicate of variable composition. The gel-like phases were similar in composition to a chamositic clay, whereas the crystalline structures were more siliceous and had compositions between those of glauconite and kaolinite. The consistent formation of (Fe, Al) silicates by all bacterial populations, regardless of substratum lithology, implies that biomineralization was a surface process associated with the anionic nature of the cell wall. The adsorption of dissolved constituents from the aqueous environment contributed significantly to the mineral formation process. In this regard, it appears that epilithic microbial biofilms dominate the reactivity of the rock-water interface and may determine the type of minerals formed, which will ultimately become part of the riverbed sediment. Because rivers typically contain high concentrations of dissolved iron, silicon, and aluminum, these findings provide a unique insight into biogeochemical activities that are potentially widespread in natural waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...